TRANFORMASI POLIMORFIK DAN KARAKTERISASI MIKROSTRUKTUR FASA TiO₂ YANG DIHASILKAN MELALUI KALSINASI NANOPITA HIDROGEN TITANAT

(Polymorphic Transformation and Microstructure Characterization of TiO₂ Phases Prepared by the Calcination of Hydrogen Titanates Nanoribbons)

Hari Sutrisno

Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Yogyakarta State University, Karangmalang, Yogyakarta 55281 E-mail: sutrisnohari@uny.ac.id

Abstract

Sodium titanates were synthesized by hydrothermal method using $Ti(O_2)O.2H_2O$ as the starting material in 10 M NaOH at 150°C for 72 h. Hydrogen titanate nanoribbons were obtained by ion exchange of H⁺ for K⁺ in sodium titanates by 0.1 M HCl. TiO₂ (B), anatase, and anatase-rutile mixture were obtained by the calcinations of hydrogen titanate nanoribbons for 2 h at 500, 700, and 900°c respectively. Hydrogen titanate nanoribbons were characterized by X-rays Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM) and High Resolution Transmition Electron Microscopy (HRTEM). Microstructure of pseudo-TiO₂ (B), anatase, and rutile prepared by the calcinations of hydrogen titanates nanoribbons convert into pseudo-TiO₂(B) then anatase and finally rutile structures by heat treatment.

Keywords: polymorphic transformation, microstructure characterization, titanium dioxide

PENDAHULUAN

Titanium dioksida (TiO₂) merupakan semikonduktor yang bersifat *inert* dan tidak toksik, sehingga banyak diaplikasikan dalam kehidupan manusia, antara lain: pewarna (*pigment*) putih dalam cat, plastik, kertas, tekstil, penyamakan kulit, farmasi (pengisi kapsul, pasta gigi dan absorber sinar UV dalam krim pelindung sinar matahari, dan kosmetika) [1], katalis-fotokatalis dan degradasi senyawa organik [2-7] dan pembersih air limbah [8]. Nanopartikel TiO₂ menjadi

untuk membuat perhatian yang besar membran yang berguna pada pengembangan sel surya tipe Grätzel melalui penambahan zat warna (dye) [9-14]. pengembangan hidrofil aktif permukaan atau fotohidrofil oleh sinar matahari atau ultra violet [15-18], sifat anti bakteri pada permukaan yang dapat digunakan dalam lingkungan rumah sakit [19-21].

Konsep aplikasi TiO₂ sebagai absorber sinar UV, fotokatalis, sel surya tipe Grätzel, fotohidrofil dan anti bakteri berdasarkan proses kimia yang terjadi akibat transisi elektron dari pita valensi ke pinta konduksi. Energi gap (E_q) dan luas permukaan spesifik memiliki peran yang sangat penting dalam proses transisi elektron tersebut. Luas permukaan dipengaruhi oleh ukuran dan morfologi partikel, sedangkan energi gap berkaitan dengan tipe struktur atau polimorfi TiO₂. Titanium dioksida memiliki 11 polimorfi. Tiga di antaranya terdapat di alam dalam bentuk mineral yang stabil yaitu anatas [22], rutil [23-24] dan brookit [25-26]. Tiga yang lain bersifat metastabil yang dihasilkan secara sintesis yaitu $TiO_2(B)$ [27-28], $TiO_2(H)$ holandit [29], TiO₂(R)-ramsdelit [30], sedangkan lima lainnya dihasilkan melalui sintesis pada tekanan dan temperatur tinggi yaitu TiO₂ tipe kolumbit α -PbO₂ (TiO₂-II) [31-32], TiO₂ tipe badeleyit (TiO₂-MI) [33-34], TiO₂ ortorombik (TiO₂-OI) [35], TiO₂ tipe fluorit CaF_2 dan TiO₂ tipe cotunit [36].

Usaha yang sering dilakukan untuk mendapatkan partikel TiO₂ untuk meningkatkan aktifitas kinerjanya, disamping melalui pengontrolan ukuran dan morfologi, juga pengontrolan tipe struktur melalui perlakuan temperatur, pH dan tekanan pada pengembangan prosedur, metode dan teknik sintesis, dan serta penggunaan prekursor titanium. Penelitian ini dilaksanakan untuk mendapatkan TiO₂ tipe struktur tertentu melalui kalsinasi pada berbagai temperatur prekursor nanopita hidrogen titanat.

METODE PENELITIAN

Bahan

Bahan-bahan yang digunakan: kristal $[Ti_8O_{12}(H_2O)_{24}]Cl_8$ HCI.7H₂O [37] yang dihasilkan dari reaksi TiOCl₂.1,4HCI.H₂O (4,85 M, Millenium) dengan uap air dalam kondisi humiditas lingkungan 55% H₂SO₄ (Aldrich), HCI (Merck), NaOH (Merck), H₂O₂ (30 %, Aldrich) dan akuades.

Peralatan

Alat-alat yang diperlukan: peralatan bomb hidrotermal (kapasitas 50 ml yang dilengkapi dengan kontrol temperature otomatis), penyaring vakum, timbangan, pengaduk magnet, oven dan pompa vakum. Instrumen diperlukan yang untuk karakterisasi padatan: difraktometer sinar-X (X-ray Diffraction/XRD) serbuk merk Bruker D8 Advance, mikroskop elektron resolusi tinggi mode transmisi (High Resolution Transmition Electrom Microscopy/HRTEM) merk Hitachi H9000NAR dengan batas resolusi 1,8 Å dan miroskop elektrom resolusi tinggi mode saputan (High Resolution Scanning Electron Microscopy/ HRSEM) merk JEOL tipe 6400.

Prosedur Kerja

Sintesis nanopita hidrogen titanat

Hidrogen titanat dihasilkan dari petukaran natrium titanat dengan larutan HCI. Natrium titanat dihasilkan berdasarkan metode hidrotermal. Natrium titanat dihasilkan dari reaksi NaOH pekat dengan padatan kuning Ti(O₂)O.2H₂O sebagai prekursor. Padatan Ti(O₂)O.2H₂O [38] dihasilkan dari penambahan larutan 30% H₂O₂ sedikit demi sedikit secara berlebih ke dalam larutan [Ti₈O₁₂(H₂O)₂₄]Cl₈,HCl,7H₂O.

Natrium titanat dihasilkan melalui pencampuran 1,5 g padatan $Ti(O_2)O.2H_2O$ dengan 30 ml larutan NaOH 10 M dalam wadah teflon dengan ukuran volume 50 ml dan diaduk selama 2 jam. Wadah teflon dimasukkan dalam bomb hidrotermal dan dipanaskan dalam keadaan statik pada temperatur 150°C selama 72 jam. Selanjutnya, campuran tersebut disaring dengan penyaring vakum, dicuci dengan akuades berkali-kali dan dikeringkan pada temperature 100°C selama 2 jam. Seluruh padatan natrium titanat yang dihasilkan pada proses di atas dimasukkan kedalam 100 ml larutan 0,1 M HCl dan diaduk pada suhu kamar selama 5 jam dan selanjutnya disaring. Padatan yang diperoleh dicuci dengan akuades hingga menghasilkan filtrat pH~6-7, kemudian dipanaskan dengan dalam oven pada temperatur 70°C selama 20 jam. Hidrogen titanat dikarakterisasi dengan XRD serbuk, HRSEM menggunakan karbon tipis sebagai pelapis sampel dan HRTEM mengunakan jaring-jaring tembaga berpolimer terlapis karbon tipis.

Perlakuan pemanasan (kalsinasi) pada hidrogen titanat

Serbuk hidrogen titanat dibagi menjadi 4 bagian : 1 bagian disimpan dan 3 bagian masing-masing dipanaskan dalam tungku pemanas pada temperatur 500, 700 dan 900°C selama 2 jam. Masing-masing padatan hasil perlakuan tersebut dikarakterisasi dengan *XRD* serbuk untuk dikarakterisasi strukturnya.

Analisis Kristalografi

Analisis kristal semua padatan atas dasar pola XRD dilakukan dengan bantuan program kristalografi. Penentuan struktur dilakukan melalui Metode Dua Tingkat (The Two-Stage Method) [39]: (a). tahap 1a: analisis profil dan tahap 1b: dekomposisi pola dan (b). tahap 2: perhitungan kristalografik yang meliputi: analisis least squares, analisis struktur dan perhitungan yang lain. Parameter kisi dan group ruang berturut-turut diperoleh secara dengan program Dicvol [40] dan Chekcell [41]. Analisis profil, dekomposisi pola dan analisis least squares dilakukan dengan bantuan program Fullprof yang terintegrasi dalam program Winplotr [40], sedangkan penentuan struktur yang meliputi koordinat atom dan parameter pergeseran isotropik ataupun anisotropik menggunakan metode Langsung dan Patterson dengan bantuan program ShelXS dan ShelXL vang terintegrasi dalam program Oscail-X [42]. Penggambaran struktur atom dalam tiga dimensi dilakukan dengan bantuan program Diamond [43].

HASIL DAN PEMBAHASAN

Karakterisasi nanopita hidrogen titanat

Sintesis natrium titanat dilaksanakan menggunakan prekursor Ti(O₂)O.2H₂O dan NaOH pekat (10M) dengan metode hidrotermal pada temperature 150°C selama 72 jam dan dilanjutkan pertukaran kationik dengan larutan HCI menghasilkan senyawa hidrogen titanat. Hidrogen titanat dikarakterisasi dengan *XRD* (Gambar 1) menunjukkan kehadiran pola *XRD* dari hidrogen titanat $H_2Ti_2O_5H_2O$ sebagaimana telah dipelajari oleh Guo *et al.* [44], Tsai and Tang [45] dan Zhang *et al.* [46].

Gambar 1. Pola *XRD* serbuk hidrogen titanat (H₂Ti₂O₅.H₂O)

Reaksi kimia pertukaran kationik dari natrium titanat $(Na_2Ti_2O_4(OH)_2)$ menjadi hidrogen titanat $(H_2Ti_2O_5.H_2O)$ adalah sebagai berikut:

Senyawa hidrogen titanat $(H_2Ti_2O_5.H_2O)$ merupakan titanat layer dengan tipe struktur seperti pada lepidokrosit (γ -FeO(OH)). Hidrogen titanat ini memiliki

kesamaan tipe struktur dengan Cs₂Ti₆O₁₃^[47] dan sesium titanat $(Cs_{x}Ti_{2-x/4}\Box_{x/4}O_{4})^{[48]}$. Struktur titanat tipe struktur lepidokrosit memiliki struktur layer berpola lurus dengan kation antar layer pada salah satu bidang, sedangkan pada bidang lainnya menunjukkan layer poli-oktahedral dengan pola zig-zag. Berdasarkan pola XRD pada Gambar 1, terdapat spektra dengan intensitas tinggi pada d = 8,055 Å yang merupakan jarak antar layer atau jarak antar bidang (200).

Gambar 2. Foto padatan hasil karakterisasi dengan *HRSEM* hidrogen titanat: (a). perbesaran 25.000x dan (b). 50.000x

Gambar 3. Foto padatan hasil *HRTEM* dari hidrogen titanat: (a). morfologi nanopita, (b). mikrostruktur, (c). jarak antar bidang sepanjang sumbu a dan (d). jarak antar layer sepanjang sumbu b

Karakterisasi dengan **HRSEM** (Gambar 2) dan HRTEM (Gambar 3a) diketahui hidrogen titanat memiliki morfologi pita dengan dimensi lebar ~25-500 nm. Pengukuran antar layer diketahui sebesar 7,89 Å (Gambar 3d) dan jarak sebesar 3,31 Å tegak lurus dengan jarak antar layer tersebut (Gambar 3c). Jarak sebesar 7,89 Å tersebut merupakan jarak antar bidang (200), sedangkan jarak 3,31 Å merupakan jaran antar bidang (110). Bidang-bidang tersebut sangat dominan, sehingga muncul dengan intensitas tinggi pada dalam pola XRD serbuk hidrogen titanat (H₂Ti₂O₅.H₂O).

Pengaruh temperatur kalsinasi terhadap struktur polimorfi TiO₂

Kalsinasi hidrogen titanat pada temperatur 500°C

Padatan vang dihasilkan dari kalsinasi hidrogen titanat pada temperatur 500°C merupakan TiO₂ dengan tipe struktur TiO₂(B). Berdasarkan hasil Fullprof Patern Matching pola XRD (Gambar 4) menunjukkan bahwa padatan tersebut memiliki sistem kristal monoklinik, grup ruang **C**2/*m* (no. 12), parameter kisi: *a* = 12,2205 Å, b = 3,7771 Å, c = 6,5389 Å dan $\beta = 106,36^{\circ}$ (Rwp = 12,2 % dan Indek GoF = 1,5).

Gambar 4. Fullprof patern matching dari pla XRD pseudo-TiO₂(B)

Analisis mikrostruktur dengan menggunakan metode Langsung dan Patterson diperoleh koordinat atom-atom Ti dan O, serta pergeseran parameter isotropik (Tabel 1). Nilai parameter pergeseran anisotropik tidak dapat ditentukan tetapi hanya dapat ditentukan nilai parameter pergeseran isotropik yang cukup besar dikarenakan kristal memiliki kristalinitas yang rendah. Panjang ikatan Ti-O penyusun oktahedral diketahui terdapat ikatan yang pendek: 1,532 dan 1,479 Å, serta ikatan yang panjang: 2,902 Å. Berdasarkan hal tersebut dapat dispastikan bahwa penyusun struktur TiO₂ berupa oktahedral terdistorsi dan segi empat piramidal (Gambar 5), sehingga kristal tersebut lebih cenderung memiliki tipe struktur *pseudo*-TiO₂(B).

Tabel 1. Koordinat atom, parameter pergeseran isotropik dan jarak ikatan Ti-Odalam struktur pseudo-TiO2(B)

Atom	Wyck.	x	У	Z	U (Ų)
TI1 TI2 O1 O2 O3 O4	4i 4i 4i 4i 4i 4i	0,17169 0,06876 0,16752 0,25970 0,04741 0,34170	0 0 0 0 0	0,35394 0,70367 0,03459 0,68236 0,25026 0,28597	0,1630 0,4407 0,2562 0,2186 0,2357 0,2347
<u>lkatan Ti</u>	- <u>O (Å)</u>				
TI2—03 ⁱ TI2—01 ⁱⁱ TI2—04 ⁱⁱⁱ TI2—04 ^{iv} TI2—03 TI2—02	1,532 2,161 2,174 2,174 2,902 2,376	TI1—O3 TI1—O2 ⁱⁱⁱ TI1—O4 TI1—O2 ^{iv} TI1—O1	1,479 2,107 2,244 2,107 2,074		

Gambar 5. Struktur *pseudo*-TiO₂(B) (kristal hasil kalsinasi hidrogen titanat pada temperature 500°C) proyeksi (010) tersusun dari oktahedral (TiO₆) terdistorsi dan segiempat piramidal (TiO₅)

Kalsinasi hidrogen titanat pada temperatur 700°C

Hasil analisis *Fullprof Patern Matching* pola *XRD* menunjukkan bahwa kristal yang didapat dari kalsinasi hidrogen titanat pada temperatur 700°C merupakan TiO₂ dengan tipe struktur anatas (Gambar 6). Kristal ini memiliki memiliki sistem kristal tetragonal, grup ruang $I4_1/amd$ (no. 141) dengan parameter kisi: a = 3,8048 Å dan c =9,5962 Å (Rwp = 6,42 % dan GoF = 1,4).

Gambar 6. Fullprof patern matching dari pola XRD TiO2-anatas

 Tabel 2. Koordinat atom, parameter pergeseran anisotropik dan jarak ikatan Ti-O dalam struktur anatas (kalsinasi hidrogen titanat pada temperature 700°C)

Atom	Wyck.	Occ.	x	у	z		
TI1	4b		0	0	1/2		
01	8e	0,5	0	-1/2	0,54302		
_							
Paramet	<u>Parameter pergeseran anisotrop (A²)</u>						
Atom	U ₁₁	U 22	U 33	U 12	U ₁₃	U ₂₃	
TI1	0,07081	0,07081	0,06503	0,00000	0,00000	0,00000	
01	0,04324	0,10286	0,08831	0,00000	0,00000	0,00000	
<u>Ikatan Ti-O (Å)</u>							
111-01	1,947	III—C	1,986)			
TI1—O1'	1,947	TI1—C	01° 1,986	6			
TI1—O1"	1,947						
TI1—01 ⁱⁱ	ⁱ 1,947						

Analisis mikrostruktur dengan metode Langsung dan Patterson diperoleh koordinat atom-atom Ti dan O, serta pergeseran parameter anisotropik (Tabel 2). Parameter pergeseran anisotrpik memiliki nilai yang sangat baik, karena kristalinitas padatan tersebut sangat tinggi. Panjang ikatan Ti-O penyusun oktahedral terdiri dari 2 tipe yaitu 4 buah sebesar 1,947 Å yang terletak pada ekuatorial dan 2 buah sebesar 1,986 Å terletak pada aksial. Gambar 7 merupakan penggambaran struktur anatas dari kalsinasi hidrogen titanat pada temperatur 700°C.

Gambar 7. Struktur anatas (kalsinasi hidrogen titanat pada temperature 700°C):
 (a). penggambaran struktur atom dengan anisotropik faktor probabilitas (*thermal ellipsoids*) 75 % dan (b). penggambaran struktur oktahedral

Kalsinasi hidrogen titanat pada temperatur 900°C

Hasil analisis Fullprof Patern Matching pola XRD padatan yang dihasilkan dari kalsinasi hidrogen titanat pada temperatur 900°C menunjukkan adanya 2 fasa polimorfi TiO₂ yaitu tipe struktur anatas (mayor) dan rutil (minor) (Gambar 8). Kristal anatas memiliki sistem kristal tetragonal, grup ruang $I4_1/amd$ (no. 141) dengan parameter kisi: a = 3,8122 Å dan c = 9,6309 Å, sedangkan rutil memiliki slstem kristal tetragonal, grup ruang $P4_2/mnm$ (no. 136) dengan parameter kisi: a = 4,6359 Å dan c = 2,9926 Å, (Rwp = 12,2 % dan GoF = 1,8).

Analisis mikrostruktur dengan menggunakan metode Langsung dan Patterson diperoleh koordinat atom-atom Ti dan O, serta pergeseran parameter anisotropik dalam masing-masing polimorfi TiO₂: anatas dan rutil (Tabel 3).

Gambar 8. Fullprof patern matching dari XRD anatas dan rutil (kalsinasi hidrogen titanat pada temperature 900°C)

Tabel 3. Koordinat Atom, parameter pergeseran anisotropik dan jarak ikatan Ti-O dalam struktur anatas dan rutil (kalsinasi hidrogen titanat pada temperature 900°C)

			TiO ₂ -anata	as				
Atom	Wyck.	Occ.	х	У	Z			
TI	4b	0,25	1/2	0	1/4			
0	8 <i>e</i>		0	0	0,29047			
Parame	Parameter pergeseran anisotrop (Å ²)							
Atom	U 11	U 22	U 33	U 12	U 13	U ₂₃		
TI	0,05470	0,05470	0,05343	0,00000	0,00000	0,00000		
0	0,10850	0,04504	0,06243	0,00000	0,00000	0,00000		
Ikatan T	<u>i-O (Å)</u>							
TI—Oʻ	1,946	TI—O ⁱ	′2,018					
TI—O ⁱⁱ	1,946	TI—O [∨]	2,018					
TI—O ⁱⁱⁱ	1,946							
TI—O	1,946							
<u>TiO₂-Rutil</u>								
			<u>TiO₂-Rut</u>	il				
Atom	Wyck.	Occ.	<u>TiO₂-Rut</u> x	il y	Z			
Atom ⊤I	Wyck. 2a	Occ.	<u>TiO₂-Rut</u> x 0	il y 0	z 0			
Atom TI O	Wyck. 2a 4g	Occ. 2	<u>TiO₂-Rut</u> x 0 -0,28337	il y 0 0,28337	z 0 0			
Atom TI O Parame	Wyck. 2a 4g ter pergese	Occ. 2 ran anisot	<u>TiO₂-Rut</u> x 0 -0,28337 rop (Å ²)	il y 0,28337	z 0 0			
Atom TI O Parame Atom	Wyck. 2a 4g ter pergese U ₁₁	Occ. 2 <u>ran anisot</u> U ₂₂	TiO ₂ -Rut x 0 -0,28337 rop (Å ²) U ₃₃	il y 0 0,28337 U ₁₂	z 0 0 U ₁₃	U ₂₃		
Atom TI O Parame Atom TI	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese U ₁₁ 0,07383	Occ. 2 <u>ran anisot</u> U ₂₂ 0,07383	TiO₂-Rut x 0 -0,28337 rop (Å ²) U ₃₃ 0,05344	il y 0,28337 U ₁₂ -0,01434	z 0 0 U ₁₃ 0,00000	U ₂₃ 0,00000		
Atom TI O Parame Atom TI O	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese U ₁₁ 0,07383 0,06318	Occ. 2 <u>ran anisot</u> <u>U₂₂</u> 0,07383 0,06318	<u>TiO₂-Rut</u> x 0 -0,28337 rop (Å ²) U ₃₃ 0,05344 0,01288	il y 0,28337 U ₁₂ -0,01434 0,01234	z 0 0 U ₁₃ 0,00000 0,00000	U ₂₃ 0,00000 0,00000		
Atom TI O Parame Atom TI O Ikatan T	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese <i>U</i> ₁₁ 0,07383 0,06318 i-O (Å)	Occ. 2 <u>tran anisot</u> <u>U22</u> 0,07383 0,06318	<u>TiO₂-Rut</u> x 0 -0,28337 rop (Å ²) U ₃₃ 0,05344 0,01288	il y 0,28337 U ₁₂ -0,01434 0,01234	z 0 0 U ₁₃ 0,00000 0,00000	U ₂₃ 0,00000 0,00000		
Atom TI O Parame Atom TI O Ikatan T TI—O ⁱ	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese <i>U</i> ₁₁ 0,07383 0,06318 <u>i-O (Å)</u> 2,063	Occ. 2 bran anisot U ₂₂ 0,07383 0,06318 TIC	<u>TiO₂-Rut</u> x 0 -0,28337 rop (Å ²) U ₃₃ 0,05344 0,01288 0 1,858	il y 0,28337 U ₁₂ -0,01434 0,01234	Z 0 0 U ₁₃ 0,00000 0,00000	U ₂₃ 0,00000 0,00000		
Atom TI O Parame Atom TI O Ikatan T TIO ⁱ TIO ⁱ	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese <i>U</i> ₁₁ 0,07383 0,06318 <u>i-O (Å)</u> 2,063 2,063	Occ. 2 <u>tran anisot</u> 0,07383 0,06318 TI—C TI—C	$\begin{array}{r} \underline{\text{TiO}_2\text{-Rut}}\\ \textbf{x}\\ 0\\ -0,28337\\ \underline{\text{rop}} (\textbf{Å}^2)\\ \textbf{U}_{33}\\ 0,05344\\ 0,01288\\ 0,01288\\ 0 \\ 1,858\\ 0 \\ 1,858 \end{array}$	il y 0,28337 U ₁₂ -0,01434 0,01234	z 0 0 U ₁₃ 0,00000 0,00000	U ₂₃ 0,00000 0,00000		
Atom TI O Parame Atom TI O Ikatan T TI—O ⁱ TI—O ⁱⁱ TI—O ⁱⁱⁱ TI—O ⁱⁱⁱ	Wyck. 2 <i>a</i> 4 <i>g</i> ter pergese <i>U</i> ₁₁ 0,07383 0,06318 i-O (Å) 2,063 2,063 2,063	Occ. 2 ran anisot U ₂₂ 0,07383 0,06318 TI—C TI—C	$\begin{array}{c} \underline{\text{TiO}_2\text{-Rut}}\\ \textbf{x}\\ 0\\ -0,28337\\ \underline{\text{rop}} (\textbf{Å}^2)\\ \hline \textbf{U}_{33}\\ 0,05344\\ 0,01288\\ 0,01288\\ 0 & 1,858\\ 0^{\vee} & 1,858 \end{array}$	il y 0,28337 U ₁₂ -0,01434 0,01234	z 0 0 U ₁₃ 0,00000 0,00000	U ₂₃ 0,00000 0,00000		

Parameter pergeseran anisotropik memiliki nilai yang sangat baik, karena kristalinitas campuran kristal tersebut sangat tinggi. Kristal anatas terdiri dari 2 tipe Ti-O penyusun oktahedral yaitu 4 buah sebesar 1,946 Å yang terletak pada ekuatorial dan 2 buah sebesar 2,018 Å terletak pada aksial. Dalam kristal rutil juga terdiri dari 2 tipe panjang ikatan Ti-O, dimana panjang ikatan yang terletak pada ekuatorial lebih panjang dari pada aksial. Panjang ikatan Ti-O yang terletak dpada ekuatorial sebanyak 4 buah dengan panjang 2,063 Å dan 2 buah pada aksial dengan panjang ikatan 1,858 Å. Gambar 9 merupakan penggambaran struktur anatas dam rutil dari kalsinasi hidrogen titanat pada temperatur 900°C.

Gambar 9. Struktur: (a). anatas dan rutil (kalsinasi hidrogen titanat pada temperature 900°C) (penggambaran struktur atom dengan anisotropik faktor probabilitas (thermal ellipsoids)75 % dan penggambaran strukur oktahedral)

Transformasi fasa polimorfi TiO₂

Fasa TiO_2 yang dihasilkan dari kalsinasi hidrogen titanat ($H_2Ti_2O_5.H_2O$) pada temperatur 500, 700 dan 900°C secara berturut-turut yaitu $TiO_2(B)$, anatas, dan campuran anatas-rutil. Berdasarkan atas kehadiran 3 tipe polimorfi TiO₂ tersebut disimpulkan bahwa terjadi tranformasi fasa akibat perlakuan panas dari struktur 2 D (dimensi): H₂Ti₂O₅.H₂O menjadi 3D: *pseudo*- $TiO_2(B) \rightarrow anatas$ \rightarrow rutil. Mekanisme penggelinciran bidang kristal pada transformasi struktur 2D menjadi 3D digambarkan seperti pada Gambar 10. Fasa pseudo-TiO₂(B) terbentuk dari transformasi H₂Ti₂O₅.H₂O pada temperatur 500°C melalui kondensasi antar layer walaupun pengelinciran bidangnya kurang jelas dikarenakan hanya bidang (201) dan (110) dalam kristal TiO₂(B) yang teridentifikasi. Kondisi ini mengakibatkan sangat sulit menjelaskan mekanisme transformasi

terutama fasanya memperkirakan fasa antaranya. Diperkirakan okathedral dalam struktur kristal TiO₂(B) tidak ditemui secara sempurna. Hal ini didukung dari hasil analisis strukturnya yang membuktikan bahwa struktur TiO₂(B) cenderung berbentuk $pseudo-TiO_2(B)$. Selanjutnya anatas terbentukdari pseudo-TiO₂(B), karena bidang (201)dalam struktur $pseudo-TiO_2(B)$ berhubungan erat dengan bidang (103) dalam struktur anatas.

Fasa rutil terbentuk dari anatas melalui penggabungan dua bidang kembar anatas {112} yang saling berlawanan pada arah [110]. Bidang {112} merupakan posisi yang terbentuk melalui pemutaran 112° tegak lurus [110]. Struktur yang terbentuk melalui penggabungan di atas merupakan suatu bidang yang identik dengan bidang (010) pada rutil [49]. Transformasi fasa rutil dari anatas dapat dilihat pada Gambar 11.

Gambar 11. Transformasi fasa anatas menjadi rutil

SIMPULAN

Mikrostruktur pseudo-TiO₂ (B), anatase and rutile yang dihasilkan dari kalsinasi nanopita hidrogen titanat $(H_2Ti_2O_5.H_2O)$ pada temperatur 500, 700 dan 900°C selama 2 jam berhasil ditentukan secara ab initio melalui Metode Dua Tingkat (The Two-Stage Method) dari data XRD serbuk. Efek temperatur mengakibatkan tranformasi fasa dari struktur 2 D (dimensi): $H_2Ti_2O_5.H_2O$ menjadi 3D: pseudo-TiO₂(B) \rightarrow anatas \rightarrow rutil.

UCAPAN TERIMA KASIH

Ucapan terima kasih yang sebesarbesarnya kepada Prof. Guy OUVRAD dan Dr. Luc BROHAN atas dukungannya untuk bekerja di laboratorium kimia zat padat (Labaratoire Chimie du Solide) Institute Jean Rouxel-Université de Nantes, France.

PUSTAKA

- 1. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem., 32 (2004) 33.
- C.H.Lu, W.H. Wu, R.B. Kale, J. Hazard. Mat., 154 (2008) 649.

- M. Aizawa, Y. Morikawa, Y. Namai, H. Morikawa, Y. Iwasawa, Y., J. Phys. Chem. B., 109 (2005) 18831.
- 4. Yu.V. Kolen'ko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-Justin, Appl. Catal. B: Environ., 54 (2004) 51.
- 5. P.S. Awati, S.V. Awate, P.P. Shah, V. Ramaswamy, Catal. Commun., 4 (2003) 393.
- S. Kim, W. Choi, Environ. Sci. Technol., 36 (2002) 2019.
- 7. C.V. Rice, D. Raftery, J. Chem. Soc. Chem. Commun., (1999) 895.
- Q. Dai, Z. Zhang, N. He, P. Li, C. Yuan, Mater. Sci. Eng., C8-9 (1999) 417.
- 9. M. Grätzel, M., Inorg. Chem., 44 (2005) 6841.
- 10. M. Grätzel, J. Photochem. Photobiol. A: Chem., 164 (2004) 3.
- 11. B. O'regan, M. Grätzel, Nature, 353 (1991) 737.
- 12. M. Grätzel, J. Photochem. Photobiol. C : Photochem. Rev., 4 (2003) 145.
- U. Bach, D. Lupo, P. Compte, J.E. Moser, F. Weissörtel, J. Salbeck, H Spreitzer, M. Grätzel, Nature, 395 (1998) 583.
- 14. A. Hagfeldt, M. Grätzel, Chem. Rev., 95 (1995) 49.
- 15. A.A. Ashkarran, M.R. Mohammadi zadeh, Mater. Res. Bull., 43 (2008) 522.
- Y. Masuda, K. Kato, Chem. Mater., 20 (2008) 1057.
- R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater., 10 (1998) 135.
- R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature, 388 (1997) 431.

- M.S.A.S. Shah, M. Nag, T. Kalagara, S. Singh, S.V. Manorama, Chem. Mater. 20 (2008) 2455.
- Z. Huang, P.C. Maness, D.M. Blake, E.J. Wolfrum, S. Smolinski, and W.A. Jacoby, J. Photochem. Photobiol. A: Chem., 130 (2000) 163.
- P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Microbiol., 65(9) (1999) 4094.
- T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, H. Fuess, Ultramicroscopy, 81(3-4) (2000) 263.
- 23. R.J. Swope, J.R. Smyth, A.C. Larson, Am. Mineral., 80 (1995) 448.
- 24. S.C. Abrahams, J.L. Bernstein, J. Chem. Soc. Phys. A., 55 1971 3206.
- W. Luo, S.F. Yang, Z.C. Wang, Y. Wang, R. Ahuja, B. Johanssonb, J. Liu, G.T. Zou, Solid State Commun., 133 (2005) 49.
- 26. W.H. Baur, Acta Cryst., C14 (1961) 214.
- 27. T.P. Feist, P.K. Davies, J. Solid State Chem., 101 (1992) 275.
- 28. R. Marchand, L. Brohan, M. Tournoux, Mater. Res. Bull., 15 (1980) 1129.
- M. Latroche, L. Brohan, R. Marchand, M. Tournoux, J. Solid State Chem., 31 (1989) 78.
- J. Akimoto, Y. Gotoh, Y. Osawa, N. Nonose, T. Kumagai, K. Aoki, H. Takei, J. Solid State Chem., 113 (1994) 27.
- I.E. Grey, C. Li, I.C. Madsen, G. Braunshausen, Mater. Res. Bull., 23(5) (1988) 743.
- P.Y Simons, F. Dachille, Acta Cryst., 23 (1967) 334.
- M.Y. Kuo, C.L. Chen, C.Y. Hua, H.C. Yang, P.Shen, J. Phys. Chem. B., 109 (2005) 8693.
- H. Sato, S. Endo, M.T. Sugiyama, T. Kikegawa, O. Shimomura, K. Kusaba, Science, 251(4995) (1991) 786.

- N.A. Dubrovinskaia, L.S. Dubrovinsky, R. Ahuja, V.B. Prokopenko, V. Dmitriev, H.P. Weber, J.M. Osorio-Guillen, B. Johansson, Phys. Rev. Lett., 87(27) (2001) 275501.
- M. Mattesini, J.S. De Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, R. Ahuja, Phys. Rev. B, 70 (2004) 212101-(1).
- L. Brohan, H. Sutrisno, E. Puzenat, A. Rouet, H. Terrise, Titanium Aquo-oxo Chloride and Preparation Method Thereof. United States Patent Application Publication, No. US 2007/0041890 A1 (2010),
- 38. R.L. Rich, Inorganic Reaction in Water. Berlin: Springer (2007),
- 39. G. Will, Powder Diffraction: The Rietveld Method and the Two-Stage Method. Berlin: Springer (2006),
- T. Roisnel, J. Ridriguez-Carvajal, Win-PLOTR a Graphic Tool for Powder Diffraction. Rennes: CNRS-Lab. de Chimie du Solide et Inorganique Moléculaire Université de Rennes. (2008),
- 41. J. Laugier, B. Bochu, Chekcell. Grenoble: Laboratoire des Matériaux et

du Génie Physique-Ecole Nationale Supérieure de Physique de Grenoble (INPG) (1992),

- P. McArdle, K. Gilligan, D. Cunningham, R. Dark, M. Mahon., Oscail-X version 2.1.6. NUI Galway: Crystallography Center, School of Chemistry (2008),
- 43. Bradenburg K., Diamond version 3.1. Bonn: Crystal Impact GbR. (2008).
- 44. G.S. Guo, C.N. He, Z.H. Wang, F.B. Gu, D.M. Han, Talanta, 72 (2007) 1687.
- 45. C.C. Tsai, H. Teng, Chem. Mater., 18 (2006) 367.
- M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, J. Mol. Catal. A: Chem., 217 (2004) 203.
- I.E. Grey, I.C. Madsen, J.A. Watts, L.A. Bursill, J.J. Kwiatkowska, Solid State Chem., 58(3) (1985) 350.
- T. Sasaki, M. Watanabe, Y. Michiue, Y. Komatsu, F. Izumi, S. Takenouchi, Chem. Mater., 7 (1995) 1001.
- 49. R.L. Penn, J.F. Banfield, Am. Mineral., 84 (1999) 871.